咨询电话:

18112555718

公司动态

公司动态
人工智能继续迭代 类脑计算悄然走红
发布时间:2021-05-12 09:59:17 点击次数:798

深度学习正遍地开花,但它可能并非人工智能的终极方案。无论是学术界还是产业界,都在思考人工智能的下一步发展路径:类脑计算已悄然成为备受关注的“种子选手”之一。

12月16日至17日,由北京未来芯片技术高精尖创新中心及清华大学微电子学研究所联合主办的“北京高精尖论坛暨2019未来芯片论坛”在清华大学举行,这次论坛上,类脑计算成为多位权威专家热议的人工智能研究方向。

人工智能浪潮下的洋流

如果说,当下人工智能发展浪潮正波涛汹涌的话,类脑计算就是浪潮之下的洋流。虽不太引人注意,未来却有可能改变人工智能发展趋势。原因之一是,深度学习虽在语音识别、图像识别、自然语言理解等领域取得很大突破,并被广泛应用,但它需要大量的算力支撑,功耗也很高。

北京大学计算机科学技术系教授也举了一个生动的例子:市场上应用深度学习技术的智能无人机已经十分灵巧,但从智能程度上看,却与一只苍蝇或蜻蜓相差甚远,尽管体积和功耗比后者高很多。

追求模拟大脑的功能

到底什么是类脑计算,它又凭什么赢得学术界和产业界的宠爱?

类脑计算从结构上追求设计出像生物神经网络那样的系统,从功能上追求模拟大脑的功能,从性能上追求大幅度超越生物大脑,也称神经形态计算。类脑计算试图模拟生物神经网络的结构和信息加工过程。它在软件层面的尝试之一是脉冲神经网络(SNN)。

现在深度学习一般通过卷积神经网络(CNN)或递归神经网络(RNN)来实现。CNN和RNN都属于人工神经网络,其中的人工神经元,至今仍在使用上世纪40年代时的模型。虽然现在设计出的人工神经网络越来越大,也越来越复杂,但从根本上讲,其神经元模型没有太大改进。

另一方面,在深度学习人工神经网络中,神经元之间的连接被称为权值。它们是人工神经网络的关键要素。而在脉冲神经网络中,神经元之间却是神经脉冲,信息的表达和处理通过神经脉冲发送来实现。就像我们的大脑中,有大量神经脉冲在传递和流转。

由于神经脉冲在不停地传递和流转,脉冲神经网络在表达和处理信息时,比深度学习的时间性更突出,更加适合进行高效的时空信息处理。

推广应用可能不需太久

也有人从硬件层面去实现类脑计算,比如神经形态芯片。在对信息的编码、传输和处理方面,我们希望从大脑机制中获得启发,将这些想法应用到芯片技术上,让芯片的处理速度更快、水平更高、功耗更低。

所以我们在尝试研发存算一体化的芯片,希望通过避免芯片内部不停地搬运数据,来大幅提高芯片的能效比。谈到类脑计算的进展,黄铁军告诉记者,目前类脑计算仍在摸索阶段,还缺乏典型的成功应用。但商业公司已经嗅到味道,相关技术获得规模性应用可能不需要太长时间。

现在的神经形态计算还比较初步,它的发展水平跟现有主流人工智能算法相比,还存在一定差距。但作为一种新的探索方式,应该继续坚持,因为它可能就是未来人工智能技术发展的重要突破口。


Copyright©版权所有 俊灏方达管理咨询(苏州)有限公司苏ICP备2021029237号 苏公网安备 32059002003617号

技术支持:易动力网络